
Raw DDE

Sanford A. Staab

Created: March 20, 1992

ABSTRACT

Dynamic data exchange (DDE) is one of the least understood capabilities of the MicrosoftÒ 
WindowsÔ graphical environment. For the most part, this lack of understanding results from the 
absence of a highly detailed explanation of the correct protocol to use when performing DDE 
transactions. This article describes each type of DDE transaction in a table format that outlines what 
operations the client and server applications must perform to complete the transaction properly.

The DDEML.DLL library in Windows version 3.1 removes the need for most applications to deal with 
raw DDE transactions. However, understanding proper DDE transaction protocol is a necessity when 
creating or communicating with applications that do not use DDEML.

INTRODUCTION
In this article, each possible dynamic data exchange (DDE) transaction is represented by a table. The
client column of the table shows the actions taken by the client application. The server column of the 
table shows the actions taken by the server application. Each row represents a point in time with time 
elapsing with subsequent rows.

Before presenting all possible legal DDE transaction sequences, it is necessary to introduce some 
abbreviated syntax, in the form of functions, to clarify and unclutter the transaction descriptions.

Post Actions

All posted DDE messages are similar in that the wParam parameter always holds the window handle 
from which the message was posted. The lParam parameter, however, varies from message to 
message and usually contains two values. In versions 3.0 and 3.1 of the MicrosoftÒ WindowsÔ 
graphical environment, these values are kept in the LOWORD and HIWORD of lParam. In the 
Win32Ô Application Programming Interface, these parts are packed within a structure pointed to by 
lParam. When an application posts a DDE message, the table will display:

Post(msg, lo, hi, status, format) 
msg is the WM_DDE message being posted. The msg parameter is described using the 

distinguishing letters of the message name and may optionally have a bracketed qualifier explaining the 
context of the message. The message type and context dictate the lo and hi values. 

lo and hi are the respective parts of lParam that distinguish the message.
status and format are optional pieces of information that are packed into the global data handle 

being passed within lParam.

status flags pertaining to the transaction sequence are listed. A ‘!’ preceding a flag name means that it
must be FALSE; if the ‘!’ is absent, the flag must be TRUE. A ‘?’ indicates that flag settings do not 
matter in a transaction. A parameter set to ‘–’ is not applicable.

For example:



Post(ACK[execute], !fAck, hCommands, –, –)

means that a WM_DDE_ACK message was posted in response to a WM_DDE_EXECUTE message.
The LOWORD of lParam had the fAck bit clear. The HIWORD of lParam had the hCommands data 
handle. This data handle does not contain any extra information, so two dashes indicate that this 
information is not applicable.

Table 1 lists all DDE messages and contexts possible along with their corresponding lo and hi values.

Table 1. DDE Messages and Contexts

Mes
sag
e 
and 
con
text

LO
WO
RD 
of 
lPa
ra
m

HI
WO
RD 
of 
lPa
ra
m

Info
rma
tion
in 
dat
a 
han
dle

Se
nt 
fr
o
m

Com
ments

INI
T

aA
pp

aIt
em

Cl
ie
nt

Sent 
only.

AC
K[in
it]

aA
pp

aIt
em

S
er
ve
r

Sent 
only.

AC
K[a
dvis
e]

wS
tat
us

aIt
em

S
er
ve
r

AC
K[d
ata]

wS
tat
us

aIt
em

Cl
ie
nt

AC
K[e
xec]

wS
tat
us

hC
om
ma
nd
s

S
er
ve
r

AC
K[h
otd
ata]

wS
tat
us

aIt
em

Cl
ie
nt

AC
K[p
oke
]

wS
tat
us

aIt
em

S
er
ve
r

AC
K[re
que
st]

wS
tat
us

aIt
em

S
er
ve
r



AC
K[u
nad
vise
]

wS
tat
us

aIt
em

S
er
ve
r

AD
VIS
E

hO
pti
on
s

aIt
em

wSt
atu
s, 
for
mat

Cl
ie
nt

The 
fRele
ase 
bit is 
ignor
ed 
and 
alway
s 
assu
med 
to be 
TRU
E.

DA
TA[r
equ
est]

hD
ata

aIt
em

wSt
atu
s, 
for
mat

S
er
ve
r

fReq
uest 
is 
alway
s 
TRU
E.

DA
TA[
hot]

hD
ata

aIt
em

wSt
atu
s, 
for
mat

S
er
ve
r

fReq
uest 
is 
alway
s 
FALS
E.

DA
TA[
war
m]

0 aIt
em

S
er
ve
r

fAck 
is 
assu
med 
FALS
E. 

EX
EC
UT
E

0 hC
om
ma
nd
s

Cl
ie
nt

An 
ACK 
shoul
d 
alway
s be 
gener
ated 
regar
dless 
of the
fAck 
bit 



value
.

PO
KE

hD
ata

aIt
em

wSt
atu
s, 
for
mat

Cl
ie
nt

An 
ACK 
shoul
d 
alway
s be 
gener
ated 
regar
dless 
of the
fAck 
bit 
value
.

RE
QU
ES
T

for
ma
t

aIt
em

Cl
ie
nt

TE
RMI
NA
TE

0 0 Cl
ie
nt
or
S
er
ve
r

Spont
aneo
usly 
gener
ated 
or in 
respo
nse 
to a 
TER
MINA
TE.

UN
AD
VIS
E

for
ma
t

aIt
em

Cl
ie
nt

The wStatus parameter in Table 1 may contain any of the flags in Table 2.

Table 2. wStatus Flag Values

Flag Notes

fRel
eas
e

Indicates that the 
receiver of the data
handle is to free 
the data handle 
memory. POKE, 
DATA, and ADVISE



transactions 
responding with a 
negative ACK 
require the sender 
to free the data 
handle instead.

fAc
kRe
q

Indicates that the 
receiver must post 
an ACK message 
in response. Some 
messages imply 
this.

fAc
k

This is the same 
value as the 
fAckReq flag and is
set in ACK 
messages. When 
set, the ACK 
message is a 
positive ACK. 
When cleared, the 
message is a 
negative ACK 
(NACK for short).

fDef
erU
pd

Used only in an 
ADVISE message 
to indicate whether 
the link will be hot 
or warm. When set,
the link is warm.

Oth
er 
valu
es

Any other values in
the wStatus word 
should be ignored.

Send Actions

A syntax similar to Post is used for sending messages during the initiate sequences.

Receive Events

A Receive(msg, [flags]) implies that the current context has received the message in question. This 
indicates that this receive event triggered the actions that follow. For clarity, we may include the 
optional flags parameter to show key status flags that distinguish the message.

Create Actions

A Create(ObjectType) describes the actions an application takes to create the object, including 



standard allocation and initialization of the object. In the case of DDE data handles, this involves 
calling the GlobalAlloc function. In the case of atoms, this involves calling the GlobalAddAtom 
function. Note that creation could have happened at the time indicated by the table or previously. This 
action also includes the creation or copying of any data implied by the data within the data handle. 
For example, this would include the creation of a bitmap for CF_BITMAP data.

Reuse Actions

A Reuse(ObjectType) action indicates that the application can reuse the object given to it by a 
preceding Post or that it may have freed the object and later recreated it.

Free Actions

Generally the Free(ObjectType) action is the inverse of the Create(ObjectType) action. In the case of 
data handles, this involves calling the GlobalFree function. In the case of atoms, this involves calling 
the GlobalDeleteAtom function. Free actions can happen at the time noted or later. This includes the
freeing of any indirect data implied by the object’s contents.

TRANSACTION TABLES
DDE is always initiated by the client application sending or broadcasting (via SendMessage) a 
WM_DDE_INITIATE message. When a server application receives this message, it checks the 
application and topic atoms to decide whether it should respond. Should it decide to do so, it sends 
back a WM_DDE_ACK message to the client, thus establishing a DDE connection. Table 3 outlines 
this action.

Table 3. Initiation

Client Server Comments

Creat
e(aAp
pClie
nt)

Creat
e(aTo
picCli
ent)

Send
(INIT, 
aApp
Client
, 
aTopi
cClie
nt)

The client 
sends or 
broadcasts
a 
WM_DDE_
INITIATE 
message 
to all 
potential 
servers. 
aAppClient
and 
aTopicClie
nt may be 
0 to 
indicate a 
wild 
initiate. All 
top-level 
windows 
are 



potential 
servers.

Recei
ve(INI
T)

Creat
e(aAp
pServ
er)

Creat
e(aTo
picSer
ver)

Send(
ACK[i
nit], 
aApp
Serve
r, 
aTopi
cServ
er)

When a 
potential 
server 
wants to 
respond to 
the client’s 
offer, it 
posts a 
WM_DDE_
ACK 
message 
back to the
client, 
letting the 
client know
the 
server’s 
window 
handle.

Recei
ve(A
CK[ini
t], 
aApp
Serve
r, 
aTopi
cServ
er))

Free(
aApp
Serve
r)

Free(
aTopi
cServ
er)

.

.

.

After 
Send
(INIT)
is 
compl

Once the 
client 
receives 
the ACK 
message, 
both 
windows 
are locked 
into a DDE
conversati
on. A 
WM_DDE_
TERMINA
TE must 
be posted 
from either
the client 
or the 
server to 
close the 
conversati
on 
properly.



eted:

Free(
aApp
Client
)

Free(
aTopi
cClie
nt)

Table 4. REQUEST—Server Sets fRelease

Client Server Comments

Creat
e(aIte
mClie
nt)

Post(
REQ
UEST
, 
forma
t, 
aItem
Client
, –, –)

The client 
application
posts a 
WM_DDE_
REQUEST
message 
to the 
server, 
asking for 
data that 
aItemClien
t 
references 
and in the 
format 
specified.

Recei
ve(RE
QUES
T)

Reus
e(aIte
mClie
nt)

Creat
e(hDa
taSer
ver)

Post(
DATA[
reque
st], 
hData
Serve

The server
receives 
the 
REQUEST
message 
and 
decides to 
post a data
message 
containing 
the 
requested 
data. The 
server sets
the 
fRelease 
bit, which 
tells the 
client that 
it is 



r, 
aItem
Client,
fRequ
est | 
fRele
ase, 
format
)

responsibl
e for 
freeing the 
data. 
Because 
the fAck bit
is not set, 
the client 
should not 
ACK the 
data 
message 
and 
therefore 
must 
accept 
responsibili
ty for 
freeing the 
data. The 
fRequest 
bit 
indicates 
that this 
data 
message 
is in 
response 
to a 
REQUEST
message.

Recei
ve(D
ATA[r
eque
st])

Free(
hData
Client
)

Free(
aItem
Client
)

The client 
receives 
the data 
and must 
eventually 
free the 
data 
handle and
atom.

Table 5. REQUEST—Server Sets fAckReq

Client Server Comments

Creat The client 



e(aIte
mClie
nt)

Post(
REQ
UEST
, 
forma
t, 
aItem
Client
, –, –)

application
posts a 
WM_DDE_
REQUEST
message 
to the 
server, 
asking for 
data that 
aItemClien
t 
references 
and in the 
format 
specified.

Recei
ve(RE
QUES
T)

Reus
e(aIte
mClie
nt)

Creat
e(hDa
taSer
ver)

Post(
DATA[
reque
st], 
hData
Serve
r, 
aItem
Client,
fRequ
est | 
fAckR
eq | !
fRele
ase, 
format
)

The server
receives 
the 
REQUEST
message 
and 
decides to 
post a data
message 
containing 
the 
requested 
data. The 
server 
clears the 
fRelease 
bit, which 
tells the 
client that 
it is not 
responsibl
e for 
freeing the 
data. 
Because 
the fAck bit
is set, the 
client 
should 
ACK the 
data 
message. 
The 
fRequest 
bit 
indicates 
that this 
data 
message 
is in 



response 
to a 
REQUEST
message.

Recei
ve(D
ATA[r
eque
st])

Reus
e(aIte
mClie
nt)

Post(
ACK[
data],
?, 
aItem
Client
, –, –)

The client 
receives 
the data 
and must 
post an 
ACK or a 
NACK 
because 
the fAck bit
was set in 
the data 
message.

Recei
ve(AC
K[dat
a])

Free(
aItem
Client
)

Free(
hData
Serve
r)

The server
receives 
the data 
ACK and is
responsibl
e for 
freeing the 
data 
handle and
atom.

Table 6. REQUEST—Server Sets fRelease and fAckRequest—Client ACKs

Client Server Comments

Creat
e(aIte
mClie
nt)

Post(
REQ
UEST
, 
forma
t, 
aItem

The client 
application
posts a 
WM_DDE_
REQUEST
message 
to the 
server, 
asking for 
data that 
aItemClien



Client
, –, –)

t 
references 
and in the 
format 
specified.

Recei
ve(RE
QUES
T)

Reus
e(aIte
mClie
nt)

Creat
e(hDa
taSer
ver)

Post(
DATA[
reque
st], 
hData
Serve
r, 
aItem
Client,
fRequ
est | 
fRele
ase | 
fAckR
eq, 
format
)

The server
receives 
the 
REQUEST
message 
and 
decides to 
post a data
message 
containing 
the 
requested 
data. The 
server sets
the 
fRelease 
bit, which 
tells the 
client that 
it is 
responsibl
e for 
freeing the 
data. 
Because 
the fAck bit
is set, the 
client 
should 
ACK the 
data 
message. 
The 
fRequest 
bit 
indicates 
that this 
data 
message 
is in 
response 
to a 
REQUEST
message.

Recei
ve(D
ATA[r
eque
st])

The client 
receives 
the data 
and 
decides to 



Free(
hData
Client
)

Reus
e(aIte
mClie
nt)

Post(
ACK[
data],
fAck, 
aItem
Client
, –, –)

post an 
ACK. This 
tells the 
server and 
the system
that the 
client has 
accepted 
responsibili
ty for 
freeing the 
data 
handle.

Recei
ve(AC
K[dat
a], 
fAck)

Free(
aItem
Client
)

The server
receives 
the data 
ACK and 
therefore is
not 
responsibl
e for 
freeing the 
data 
handle, 
only the 
atom.

Table 7. REQUEST—Server Sets fRelease and fAckRequest—Client NACKs

Client Server Comments

Creat
e(aIte
mClie
nt)

Post(
REQ
UEST
, 
forma
t, 
aItem
Client
, –, –)

The client 
application
posts a 
WM_DDE_
REQUEST
message 
to the 
server, 
asking for 
data that 
aItemClien
t 
references 
and in the 
format 
specified.



Recei
ve(RE
QUES
T)

Reus
e(aIte
mClie
nt)

Creat
e(hDa
taSer
ver)

Post(
DATA[
reque
st], 
hData
Serve
r, 
aItem
Client,
fRequ
est | 
fRele
ase | 
fAckR
eq, 
format
)

The server
receives 
the 
REQUEST
message 
and 
decides to 
post a data
message 
containing 
the 
requested 
data. The 
server sets
the 
fRelease 
bit, which 
tells the 
client that 
it is 
responsibl
e for 
freeing the 
data. 
Because 
the fAck bit
is set, the 
client 
should 
ACK the 
data 
message. 
The 
fRequest 
bit 
indicates 
that this 
data 
message 
is in 
response 
to a 
REQUEST
message.

Recei
ve(D
ATA[r
eque
st])

Free(
hData
Client
)

The client 
receives 
the data 
and 
decides to 
post a 
NACK. 
This tells 
the server 
that it has 
responsibili



Reus
e(aIte
mClie
nt)

Post(
ACK[
data],
!fAck,
aItem
Client
, –, –)

ty for 
freeing the 
data 
handle.

Recei
ve(AC
K[dat
a], !
fAck)

Free(
hData
Serve
r)

Free(
aItem
Client
)

The server
receives 
the data 
ACK and is
responsibl
e for 
freeing the 
data 
handle 
because 
the fAck bit
is clear. 
The server
should 
then free 
the data 
handle and
the atom.

Table 8. REQUEST—Server NACKs

Client Server Comments

Creat
e(aIte
mClie
nt)

Post(
REQ
UEST
, 
forma
t, 
aItem
Client
, –, –)

The client 
application
posts a 
WM_DDE_
REQUEST
message 
to the 
server, 
asking for 
data that 
aItemClien
t 
references 
and in the 
format 
specified.



Recei
ve(RE
QUES
T)

Reus
e(aIte
mClie
nt)

Post(
ACK[r
eques
t], !
fAck, 
aItem
Client
)

The server
receives 
the 
REQUEST
message 
and 
decides to 
post a 
negative 
ACK 
message, 
which 
informs the
client that 
the data is 
not 
available in
the format 
requested.

Recei
ve(A
CK[re
quest
])

Free(
aItem
Client
)

The client 
receives 
the NACK 
message, 
completing
the 
transaction
.

Table 9. POKE—Client Clears fRelease

Client Server Comments

Creat
e(aIte
mClie
nt)

Creat
e(hD
ataCli
ent)

Post(
POK
E, 
hData
Client
, 
aItem
Client
, !

The client 
posts a 
POKE 
message 
containing 
the data, 
item, and 
format 
information
. The 
fRelease 
bit is clear, 
indicating 
that the 
client 
retains 
responsibili
ty for 



fRele
ase, 
forma
t)

freeing the 
data 
handle. 
Note that 
the fAck bit
is not 
used. 
POKE 
messages 
always 
imply fAck 
= TRUE.

Recei
ve(P
OKE)

Reus
e(aIte
mClie
nt)

Post(
ACK[
poke],
?, 
aItem
Client
)

The server
receives 
the POKE 
message 
and must 
post an 
ACK 
message 
in 
response. 
Because 
the 
fRelease 
bit is clear, 
the server 
must not 
free the 
data 
handle 
memory.

Recei
ve(A
CK[p
oke])

Free(
aItem
Client
)

Free(
hData
Client
)

The client 
receives 
the ACK 
message 
and, 
regardless 
of the fAck 
bit, must 
free the 
data 
handle.

Table 10. POKE—Client Sets fRelease—Server ACKs

Client Server Comments



Creat
e(aIte
mClie
nt)

Creat
e(hD
ataCli
ent)

Post(
POK
E, 
hData
Client
, 
aItem
Client
, 
fRele
ase, 
forma
t)

The client 
posts a 
POKE 
message 
containing 
the data, 
item, and 
format 
information
. The 
fRelease 
bit is set, 
indicating 
that the 
server 
should free
the data 
handle if it 
positively 
ACKs the 
data. Note 
that the 
fAck bit is 
not used. 
POKE 
messages 
always 
imply fAck 
= TRUE.

Recei
ve(P
OKE)

Reus
e(aIte
mClie
nt)

Free(
hData
Serve
r

{serve
r})

Post(
ACK[
poke],
fAck, 
aItem
Client
)

The server
receives 
the POKE 
message 
and must 
post an 
ACK 
message 
in 
response. 
Because 
the 
fRelease 
bit is set, 
the server 
must free 
the data 
handle 
memory.

Recei
ve(A

The client 
receives 



CK[p
oke], 
fAck)

Free(
aItem
Client
)

the ACK 
and frees 
the atom.

Table 11. POKE—Client Sets fRelease—Server NACKs

Client Server Comments

Creat
e(aIte
mClie
nt)

Creat
e(hD
ataCli
ent)

Post(
POK
E, 
hData
Client
, 
aItem
Client
, 
fRele
ase, 
forma
t)

The client 
posts a 
POKE 
message 
containing 
the data, 
item, and 
format 
information
. The 
fRelease 
bit is set, 
indicating 
that the 
server 
should free
the data 
handle if it 
positively 
ACKs the 
data. Note 
that the 
fAck bit is 
not used. 
POKE 
messages 
always 
imply fAck 
= TRUE.

Recei
ve(P
OKE)

Reus
e(aIte
mClie
nt)

Post(
ACK[

The server
receives 
the POKE 
message 
and must 
post a 
NACK 
message 
in 
response. 



poke],
!fAck, 
aItem
Client
)

The client 
must free 
the data 
handle 
memory 
because of
the 
negative 
ACK.

Recei
ve(A
CK[p
oke], 
!fAck)

Free(
hData
Client
{client
})

Free(
aItem
Client
)

The client 
receives 
the ACK 
and frees 
the atom 
and data 
handle 
because 
the ACK 
was 
negative.

Table 12. EXECUTE

Client Server Comments

Creat
e(hC
omm
ands)

Post(
EXE
CUT
E, 0, 
hCom
mand
s, –, 
–)

The client 
posts an 
EXECUTE 
message 
that 
contains 
raw text for
execution. 
This data 
handle 
contains 
flags.

Recei
ve(EX
ECUT
E)

Post(
ACK[
exec],
?, 

The server
receives 
the 
EXECUTE 
and posts 
an execute
ACK, 
which 
should 



hCom
mand
s{serv
er})

contain the
same data 
handle that
was given 
to it in the 
EXECUTE.

Recei
ve(A
CK[e
xec])

Free(
hCom
mand
s{clie
nt})

The client 
receives 
the 
ACK[exec] 
message 
and frees 
the data 
handle. 
The status 
flags show 
the client 
whether 
the 
execute 
was 
successful.

Table 13. ADVISE—Server ACKs

Client Server Comments

Creat
e(aIte
mClie
nt)

Creat
e(hO
ptions
{client
})

Post(
ADVI
SE, 
hOpti
ons, 
aItem
Client
, ?, 
forma
t)

The client 
posts an 
ADVISE 
message 
with the 
item and 
format 
desired 
with which 
to be 
linked. The
flags within
the 
hOptions 
data 
handle 
indicate 
whether 
the link is 
hot or 
warm 
(fDeferUpd
) and 
whether 
the server 



is allowed 
to outrun 
the client 
(fAck).

Recei
ve(AD
VISE)

Reus
e(aIte
mClie
nt)

Free(
hOpti
ons{s
erver}
)

Post(
ACK[
advis
e], 
fAck, 
aItem
Client
)

The server
receives 
the 
ADVISE 
message 
and 
returns a 
positive 
ACK to the
client. This
makes the 
server 
responsibl
e for 
freeing the 
data 
handle.

Recei
ve(A
CK[a
dvise]
, 
fAck)

Free(
aItem
Client
)

The client 
receives 
the 
positive 
ACK and 
thus does 
not need to
free the 
data 
handle. It 
then frees 
the atom.

Table 14. ADVISE—Server NACKs

Client Server Comments

Creat
e(aIte
mClie
nt)

Creat
e(hO
ptions

The client 
posts an 
ADVISE 
message 
with the 
item and 
format 
desired 



{client
})

Post(
ADVI
SE, 
hOpti
ons, 
aItem
Client
)

with which 
to be 
linked. The
flags within
the 
hOptions 
data 
handle 
define 
whether 
the link is 
hot or 
warm 
(fDeferUpd
) and 
whether 
the server 
is allowed 
to outrun 
the client 
(fAck).

Recei
ve(AD
VISE)

Reus
e(aIte
mClie
nt)

Post(
ACK[
advis
e], !
fAck, 
aItem
Client
)

The server
receives 
the 
ADVISE 
message 
and 
returns a 
negative 
ACK to the
client. This
makes the 
client 
responsibl
e for 
freeing the 
data 
handle.

Recei
ve(A
CK[a
dvise]
, !
fAck)

Free(
hOpti
ons{cl
ient})

Free(
aItem
Client
)

The client 
receives 
the 
negative 
ACK and 
thus must 
free the 
data 
handle. It 
then frees 
the atom.



Table 15. UNADVISE

Client Server Comments

Creat
e(aIte
mClie
nt)

Post(
UNA
DVIS
E, 
forma
t, 
aItem
Client
)

The client 
posts an 
UNADVIS
E 
message, 
which 
indicates 
the format 
and item of
the link it 
wants to 
close.

Recei
ve(U
NADV
ISE)

Reus
e(aIte
mClie
nt)

Post(
ACK[
unadv
ise], ?
, 
aItem
Client
)

The server
receives 
the 
UNADVIS
E message
and posts 
a positive 
or negative
ACK back 
to the 
client.

Recei
ve(A
CK[u
nadvi
se])

Free(
aItem
Client
)

The client 
receives 
the 
ACK[unad
vise] and 
frees the 
associated
atom.

Table 16. ADVISE DATA—Warm Link 

Client Server Comments



Creat
e(aIte
mSer
ver)

Post(
DATA[
warm]
, 0, 
aItem
Serve
r)

The server
posts a 
warm link 
DATA 
message 
to inform 
the client 
that the 
data 
associated
with the 
atom 
specified 
has 
changes.

Recei
ve(D
ATA[
warm
])

Free(
aItem
Serve
r)

The client 
receives 
the 
DATA[war
m] 
message 
and frees 
the 
associated
atom.

Table 17. ADVISE DATA—Hot Link without fAck

Client Server Comments

Creat
e(aIte
mSer
ver)

Post(
DATA[
hot], 
hData
Serve
r, 
aItem
Serve
r, !
fAck | 
fRele
ase, 
format
)

The server
posts a hot
link DATA 
message 
to pass the
new data 
to the 
client. The 
fRelease 
bit gives 
the client 
responsibili
ty for 
freeing the 
data.

Recei
ve(D

The client 
receives 



ATA[r
eque
st])

Free(
hData
Client
{client
})

Free(
aItem
Serve
r)

the 
DATA[hot] 
message 
and frees 
the 
associated
atom and 
data.

Table 18. ADVISE DATA—Hot Link with fAck—Server Clears fRelease

Client Server Comments

Creat
e(aIte
mSer
ver)

Post(
DATA[
hot], 
hData
Serve
r, 
aItem
Serve
r, fAck
| !
fRele
ase, 
format
)

The server
posts a hot
link DATA 
message 
to pass the
new data 
to the 
client. The
!fRelease 
bit lets the 
server 
keep 
responsibili
ty for 
freeing the 
data.

Recei
ve(D
ATA[h
ot])

Reus
e(aIte
mSer
ver)

Post(
ACK[
data],
?, 
aItem

The client 
receives 
the 
DATA[hot] 
message 
and posts 
an ACK 
message 
to the 
server. 
Note that, 
because 
the 
fRelease 
bit was 



Client
, –, –)

clear, the 
fAck state 
of the ACK
message 
has no 
effect on 
who frees 
the data 
handle.

Recei
ve(AC
K[dat
a])

Free(
aItem
Serve
r)

Free(
hData
Serve
r
{serve
r})

The server
receives 
the ACK 
message 
and, 
regardless 
of the fAck 
state, must
free its 
data 
handle 
eventually.

Table 19. ADVISE DATA—Hot Link with fAck—Server Sets fRelease—Client ACKs

Client Server Comments

Creat
e(aIte
mSer
ver)

Post(
DATA[
hot], 
hData
Serve
r, 
aItem
Serve
r, fAck
| 
fRele
ase, 
format
)

The server
posts a hot
link DATA 
message 
to pass the
new data 
to the 
client. The 
fRelease 
bit gives 
the client 
responsibili
ty for 
freeing the 
data.

Recei
ve(D
ATA[h

The client 
receives 
the 



ot])

Reus
e(aIte
mSer
ver)

Free(
hData
Client
{client
})

Post(
ACK[
data],
fAck, 
aItem
Client
, –, –)

DATA[hot] 
message 
and frees 
the 
associated
atom and 
data. It 
then posts 
an ACK 
message 
to indicate 
to the 
server that 
the DATA 
message 
was 
handled by
the client.

Recei
ve(AC
K[dat
a], 
fAck)

Free(
aItem
Serve
r)

The server
receives 
the ACK 
and only 
frees the 
atom 
because 
the client 
freed the 
data 
handle.

Table 20. ADVISE DATA—Hot Link with fAck—Server Sets fRelease—Client NACKs

Client Server Comments

Creat
e(aIte
mSer
ver)

Post(
DATA[
hot], 
hData
Serve
r, 
aItem
Serve
r, fAck
| 
fRele
ase, 

The server
posts a hot
link DATA 
message 
to pass the
new data 
to the 
client. The 
fRelease 
bit gives 
the client 
responsibili
ty for 
freeing the 
data.



format
)

Recei
ve(D
ATA[h
ot])

Reus
e(aIte
mSer
ver)

Free(
hData
Client
{client
})

Post(
ACK[
data],
!fAck,
aItem
Client
, –, –)

The client 
receives 
the 
DATA[hot] 
message 
and frees 
the 
associated
atom and 
data. It 
then posts 
a negative 
ACK 
message 
to indicate 
to the 
server that 
the client 
did not 
handle the 
DATA 
message.

Recei
ve(AC
K[dat
a], 
fAck)

Free(
aItem
Serve
r)

Free(
hData
Serve
r
{serve
r})

The server
receives 
the 
negative 
ACK and 
frees the 
atom and 
data 
handle on 
the server 
side.

TERMINATE Transactions

Either the client or the server application may initiate TERMINATE transactions. When an application 
posts a WM_DDE_TERMINATE message, the DDE protocol calls for that application not to post any 
further DDE messages. If the application should receive any DDE messages other than the 
responding WM_DDE_TERMINATE message, the protocol states that the application should free any 
objects associated with the message.

This is not quite correct. If a WM_DDE_DATA message is posted to an application that does not have 
the fRelease bit set, the receiver should not free this data because the data may have been posted to 
several other applications as well. 



(c) 1992 Microsoft Corporation. All rights reserved




